Papers

Export 11 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G. Jan, Elkins, A., et al.. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information And Management, 57, 103174. https://doi.org/10.1016/j.im.2019.103174
Seeber, I., Bittner, E., Briggs, R. O., de Vreede, G. - J., de Vreede, T., Druckenmiller, D., et al.. (2018). Machines as Teammates: A Collaboration Research Agenda. In Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2018.055
PDF icon SeeberEtAl_2018_MachinesAsTeammates.pdf (949.98 KB)
Kernbach, J. M., & Staartjes, V. E.. (2020). Machine learning-based clinical prediction modeling – A practical guide for clinicians. Artificial Intelligence In Precision Health, 257–278. https://doi.org/10.1016/b978-0-12-817133-2.00011-2
Stilgoe, J. (2018). Machine learning, social learning and the governance of self-driving cars. Social Studies Of Science, 48, 25-56. https://doi.org/10.1177/0306312717741687
Humphries, G., & Huettmann, F.. (2018). Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability, Workflows, Citizen Science, Code Sharing, Metadata and a Brief Historical Perspective. In G. Humphries, Magness, D. R., & Huettmann, F. (Eds.), Machine Learning for Ecology and Sustainable Natural Resource Management (pp. 3 - 26). https://doi.org/10.1007/978-3-319-96978-7_1
Kühl, N., Goutier, M., Hirt, R., & Satzger, G.. (2019). Machine learning in Artificial Intelligence: Towards a common understanding (T. Bui, Tran.). In Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.630
Moore, M. M., Slonimsky, E., Long, A. D., Sze, R. W., & Iyer, R. S.. (2019). Machine learning concepts, concerns and opportunities for a pediatric radiologist. Pediatric Radiology, 49(4), 509 - 516. https://doi.org/10.1007/s00247-018-4277-7
Johnson, A. E. W., Ghassemi, M. M., Nemati, S., Niehaus, K. E., Clifton, D., & Clifford, G. D.. (2016). Machine learning and decision support in critical care. Proceedings Of The Ieee, 104(2), 444 - 466. https://doi.org/10.1109/JPROC.2015.2501978
Pereira, L. Moniz. (2019). A machine is cheaper than a human for the same task. Ai & Society. https://doi.org/10.1007/s00146-018-0874-0
Helbing, D. (2018). Machine intelligence: Blessing or curse? It depends on us! (pp. 25 - 39; D. Helbing, Ed.). In (pp. 25 - 39). https://doi.org/10.1007/978-3-319-90869-4_4
L
Gill, K. S. (2018). Looking though the Pygmalion Lens. Ai & Society, 33(4), 459 - 465. https://doi.org/10.1007/s00146-018-0866-0
Gladden, M. (2014). Leveraging the cross-cultural capacities of artificial agents as leaders of human virtual teams. In European 10th Conference on Management Leadership and Governance. Presented at the European 10th Conference on Management Leadership and Governance. Retrieved de https://www.researchgate.net/publication/268982256_Leveraging_the_Cross-Cultural_Capacities_of_Artificial_Agents_as_Leaders_of_Human_Virtual_Teams
Crowston, K. (2020). Lessons for Supporting Data Science from the Everyday Automation Experience of Spell-Checkers. In Automation Experience across Domains (AutomationXP20), CHI'20 Workshop, 26 April 2020, Virtual. Presented at the Automation Experience across Domains (AutomationXP20), CHI'20 Workshop, 26 April 2020, Virtual, Virtual workshop.
PDF icon Everyday_automation camera ready.pdf (421.84 KB)
Mlynar, J., Alavi, H. S., Verma, H., & Cantoni, L.. (2018). Lecture Notes in Computer ScienceArtificial General IntelligenceTowards a Sociological Conception of Artificial Intelligence (Vol. 10999, pp. 130 - 139; M. Iklé, Franz, A., Rzepka, R., & Goertzel, B., Eds.). In (Vol. 10999, pp. 130 - 139). https://doi.org/10.1007/978-3-319-97676-1
Das, S., Steffen, S., Clarke, W., Reddy, P., Brynjolfsson, E., & Fleming, M.. (2020). Learning occupational task-shares dynamics for the future of work. In AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (36–42). https://doi.org/10.1145/3375627.3375826

Pages