Papers

Export 11 results:
Filters: First Letter Of Last Name is C  [Clear All Filters]
2019
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P.. (2019). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. In Hawaii International Conference on System Sciences (HICSS). Presented at the Hawaii International Conference on System Sciences (HICSS). Retrieved de https://www.alexandria.unisg.ch/publications/254994
Crowston, K., & Bolici, F.. (2019). Impacts of machine learning on work. In Proceedings of the 52nd Hawai'i International Conference on System Sciences (HICSS-52). https://doi.org/10.24251/HICSS.2019.719
PDF icon Impacts_of_machine_learning_on_work__revision_.pdf (300.76 KB)
Duckworth, P., Graham, L., & Osborne, M.. (2019). Inferring work task automatability from AI expert evidence (V. Conitzer, Hadfield, G., & Vallor, S., Trans.). In the 2019 AAAI/ACM ConferenceProceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society - AIES '19 (485 - 491). https://doi.org/10.1145/330661810.1145/3306618.3314247
Choi, D. Y., & Kang, J. Hyeung. (2019). Introduction: The Future of Jobs in an Increasingly Autonomous Economy. Journal Of Management Inquiry, 28(3), 298 - 299. https://doi.org/10.1177/1056492619827373
Cirillo, V., & Zayas, J. Molero. (2019). Labor, technology and work organization: An introduction to the forum. Journal Of Industrial And Business Economics, 46(3), 313 - 321. https://doi.org/10.1007/s40812-019-00126-w
Chomanski, B. (2019). Massive technological unemployment without redistribution: A case for cautious optimism. Science And Engineering Ethics, 25(5), 1389 - 1407. https://doi.org/10.1007/s11948-018-0070-0
Chiou, E. K., Lee, J. D., & Su, T.. (2019). Negotiated and reciprocal exchange structures in human-agent cooperation. Computers In Human Behavior, 90, 288 - 297. https://doi.org/10.1016/j.chb.2018.08.012
Choi, D. Y., & Kang, J. Hyeung. (2019). Net job creation in an increasingly autonomous economy: The challenge of a generation. Journal Of Management Inquiry, 28(3), 300 - 305. https://doi.org/10.1177/1056492619827372
Levine, A. B., Schlosser, C., Grewal, J., Coope, R., Jones, S. J. M., & Yip, S.. (2019). Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends In Cancer, 5(3), 157 - 169. https://doi.org/10.1016/j.trecan.2019.02.002
Kittur, A., Yu, L., Hope, T., Chan, J., Lifshitz-Assaf, H., Gilon, K., et al.. (2019). Scaling up analogical innovation with crowds and AI. Proceedings Of The National Academy Of Sciences, 116(6), 1870-1877. https://doi.org/10.1073/pnas.1807185116
Chrisinger, D. (2019). The solution lies in education: Artificial intelligence & the skills gap. On The Horizon, 27(1), 1 - 4. https://doi.org/10.1108/OTH-03-2019-096
Correia, A., Jameel, S., Paredes, H., Fonseca, B., & Schneider, D.. (2019). Steps toward a scaffolding design framework (pp. 149 - 161; V. - J. Khan, Papangelis, K., Lykourentzou, I., & Markopoulos, P., Eds.). In (pp. 149 - 161). https://doi.org/10.1007/978-3-030-12334-5_5
Frank, M. R., Autor, D., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., et al.. (2019). Toward understanding the impact of artificial intelligence on labor. Proceedings Of The National Academy Of Sciences, 116, 6531–6539. https://doi.org/10.1073/pnas.1900949116
Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y.. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36(2), 358 - 367. https://doi.org/10.1016/j.giq.2018.10.001
Chan, S., & Siegel, E. L.. (2019). Will machine learning end the viability of radiology as a thriving medical specialty?. The British Journal Of Radiology, 92(1094), 20180416. https://doi.org/10.1259/bjr.20180416

Pages