Impacts of machine learning on work

Publication Type:

Conference Proceedings




The increased pervasiveness of technological advancements in automation makes it urgent to address the question of how work is changing in response. Focusing on applications of machine learning (ML) that automate information tasks, we present a simple framework for identifying the impacts of an automated system on a task. From an analysis of popular press articles about ML, we develop 3 patterns for the use of ML: decision support, blended decision making and complete automation. We further consider how automation of one task might have implications for other tasks. Our main conclusion is that designers have a range of options for systems and that automation of tasks is not the same as automation of work.