yavula

Export 11 results:
Filters: Drupal User is yavula
2018
J. Munoz, P., Boger, R., Dexter, S., Low, R., & Li, J.. (2018). Image Recognition of Disease-Carrying Insects: A System for Combating Infectious Diseases Using Image Classification Techniques and Citizen Science (T. Bui, Tran.). In Hawaii International Conference on System SciencesProceedings of the 51st Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System SciencesProceedings of the 51st Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2018.00010.24251/HICSS.2018.359
Vermeulen, B., Kesselhut, J., Pyka, A., & Saviotti, P.. (2018). The impact of automation on employment: Just the usual structural change?. Sustainability, 10(5), 1661. https://doi.org/10.3390/su10051661
Goos, M. (2018). The impact of technological progress on labour markets: policy challenges. Oxford Review Of Economic Policy, 34(3), 362 - 375. https://doi.org/10.1093/oxrep/gry002
Arogyaswamy, B., & Hunter, J.. (2018). The impact of technology and globalization on employment and equity. International Journal Of Global Sustainability, 3(1), 49. https://doi.org/10.5296/ijgs.v3i1.14127
Acemoglu, D., & Restrepo, P.. (2018). Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488 - 1542. https://doi.org/10.1257/aer.20160696
Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., & Shah, N. H.. (2018). Improving palliative care with deep learning. Bmc Medical Informatics And Decision Making, 18(S4). https://doi.org/10.1186/s12911-018-0677-8
J. Heberling, M., & Isaac, B. L.. (2018). iNaturalist as a tool to expand the research value of museum specimens. Applications In Plant Sciences, 6(11), e01193. https://doi.org/10.1002/aps3.1193
Mehic, A. (2018). Industrial employment and income inequality: Evidence from panel data. Structural Change And Economic Dynamics, 45, 84 - 93. https://doi.org/10.1016/j.strueco.2018.02.006
Araujo, T. (2018). The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers In Human Behavior, 85, 183 - 189. https://doi.org/10.1016/j.chb.2018.03.051
Rücker, D., Hornfeck, R., & Paetzold, K.. (2018). Investigating ergonomics in the context of human-robot collaboration as a sociotechnical system (Vol. 784, pp. 127 - 135; J. Chen, Ed.). In (Vol. 784, pp. 127 - 135). https://doi.org/10.1007/978-3-319-94346-6_12
Mlynar, J., Alavi, H. S., Verma, H., & Cantoni, L.. (2018). Lecture Notes in Computer ScienceArtificial General IntelligenceTowards a Sociological Conception of Artificial Intelligence (Vol. 10999, pp. 130 - 139; M. Iklé, Franz, A., Rzepka, R., & Goertzel, B., Eds.). In (Vol. 10999, pp. 130 - 139). https://doi.org/10.1007/978-3-319-97676-1
Gill, K. S. (2018). Looking though the Pygmalion Lens. Ai & Society, 33(4), 459 - 465. https://doi.org/10.1007/s00146-018-0866-0
Helbing, D. (2018). Machine intelligence: Blessing or curse? It depends on us! (pp. 25 - 39; D. Helbing, Ed.). In (pp. 25 - 39). https://doi.org/10.1007/978-3-319-90869-4_4
Humphries, G., & Huettmann, F.. (2018). Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability, Workflows, Citizen Science, Code Sharing, Metadata and a Brief Historical Perspective. In G. Humphries, Magness, D. R., & Huettmann, F. (Eds.), Machine Learning for Ecology and Sustainable Natural Resource Management (pp. 3 - 26). https://doi.org/10.1007/978-3-319-96978-7_1
Winn, A. N., & Neuner, J. M.. (2018). Making Sure We Don’t Forget the Basics When Using Machine Learning. Jnci: Journal Of The National Cancer Institute, 111(6), 529 - 530. https://doi.org/10.1093/jnci/djy179

Pages