Papers

Export 11 results:
Filters: First Letter Of Last Name is G  [Clear All Filters]
2019
Duckworth, P., Graham, L., & Osborne, M.. (2019). Inferring work task automatability from AI expert evidence (V. Conitzer, Hadfield, G., & Vallor, S., Trans.). In the 2019 AAAI/ACM ConferenceProceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society - AIES '19 (485 - 491). https://doi.org/10.1145/330661810.1145/3306618.3314247
Kühl, N., Goutier, M., Hirt, R., & Satzger, G.. (2019). Machine learning in Artificial Intelligence: Towards a common understanding (T. Bui, Tran.). In Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.630
Saba, L., Biswas, M., Kuppili, V., Godia, E. Cuadrado, Suri, H. S., Edla, D. Reddy, et al.. (2019). The present and future of deep learning in radiology. European Journal Of Radiology, 114, 14 - 24. https://doi.org/10.1016/j.ejrad.2019.02.038
Saba, L., Biswas, M., Kuppili, V., Godia, E. Cuadrado, Suri, H. S., Edla, D. Reddy, et al.. (2019). The present and future of deep learning in radiology. European Journal Of Radiology, 114, 14 - 24. https://doi.org/10.1016/j.ejrad.2019.02.038
Levine, A. B., Schlosser, C., Grewal, J., Coope, R., Jones, S. J. M., & Yip, S.. (2019). Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends In Cancer, 5(3), 157 - 169. https://doi.org/10.1016/j.trecan.2019.02.002
Kittur, A., Yu, L., Hope, T., Chan, J., Lifshitz-Assaf, H., Gilon, K., et al.. (2019). Scaling up analogical innovation with crowds and AI. Proceedings Of The National Academy Of Sciences, 116(6), 1870-1877. https://doi.org/10.1073/pnas.1807185116
Frank, M. R., Autor, D., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., et al.. (2019). Toward understanding the impact of artificial intelligence on labor. Proceedings Of The National Academy Of Sciences, 116, 6531–6539. https://doi.org/10.1073/pnas.1900949116
Greco, C., Polonioli, A., & Tagliabue, J.. (2019). Why small data holds the key to the future of artificial intelligence. In 8th International Conference on Data Science, Technology and ApplicationsProceedings of the 8th International Conference on Data Science, Technology and Applications (340 - 347). https://doi.org/10.5220/0007956203400347
2020
Gentili, A., Compagnucci, F., Gallegati, M., & Valentini, E.. (2020). Are machines stealing our jobs?. Cambridge Journal Of Regions, Economy And Society, 13, 153–173. https://doi.org/10.1093/cjres/rsz025
Gentili, A., Compagnucci, F., Gallegati, M., & Valentini, E.. (2020). Are machines stealing our jobs?. Cambridge Journal Of Regions, Economy And Society, 13, 153–173. https://doi.org/10.1093/cjres/rsz025
Gerber, A., Derckx, P., Döppner, D. A., & Schoder, D.. (2020). Conceptualization of the Human-Machine Symbiosis – A Literature Review. In Proceedings of the 53rd Hawaii International Conference on System Sciences (3, 289–298). https://doi.org/10.24251/hicss.2020.036
Mart'nez-Plumed, F., Tolan, S. 'l, Pesole, A., Hern'ndez-Orallo, J., Fern'ndez-Mac'as, E., & G'mez, E.. (2020). Does AI qualify for the job? A bidirectional model mapping labour and AI intensities. In AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (94–100). https://doi.org/10.1145/3375627.3375831
Hacker, P., Krestel, R., Grundmann, S., & Naumann, F.. (2020). Explainable AI under contract and tort law: legal incentives and technical challenges. Artificial Intelligence And Law. https://doi.org/10.1007/s10506-020-09260-6
H. Harvey, B., & Gowda, V.. (2020). How the FDA regulates AI. Academic Radiology, 27(1), 58 - 61. https://doi.org/10.1016/j.acra.2019.09.017
Grimshaw, D. (2020). International organisations and the future of work: How new technologies and inequality shaped the narratives in 2019. In Journal of Industrial Relations (pp. 477–507). https://doi.org/10.1177/0022185620913129
Clifton, J., Clifton, J., Glasmeier, A., & Gray, M.. (2020). When machines think for us: The consequences for work and place. Cambridge Journal Of Regions, Economy And Society, 13, 3–23. https://doi.org/10.1093/cjres/rsaa004
Clifton, J., Clifton, J., Glasmeier, A., & Gray, M.. (2020). When machines think for us: The consequences for work and place. Cambridge Journal Of Regions, Economy And Society, 13, 3–23. https://doi.org/10.1093/cjres/rsaa004

Pages