Papers
Export 11 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Artificial intelligence in medicine: What is it doing for us today?. Health Policy And Technology, 8(2), 198 - 205. https://doi.org/10.1016/j.hlpt.2019.03.004
. (2019). Beyond Dyadic Interactions: Considering Chatbots as Community Members ( ). In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI '19 (1-13). https://doi.org/10.1145/3290605
. (2019). Bots Coordinating Work in Open Source Software Projects. Computer, 52(9), 52 - 60. https://doi.org/10.1109/MC.2018.2885970
. (2019). A chatbot for supporting teams in the empathy map method ( ). In Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.029
. (2019). A chatbot for supporting teams in the empathy map method ( ). In Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. Presented at the Hawaii International Conference on System SciencesProceedings of the 52nd Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.029
. (2019). Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. European Journal Of Cancer, 111, 30 - 37. https://doi.org/10.1016/j.ejca.2018.12.016
. (2019). Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. European Journal Of Cancer, 111, 30 - 37. https://doi.org/10.1016/j.ejca.2018.12.016
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal Of Cancer, 111, 148 - 154. https://doi.org/10.1016/j.ejca.2019.02.005
. (2019). Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal Of Cancer, 113, 47 - 54. https://doi.org/10.1016/j.ejca.2019.04.001
. (2019). Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal Of Cancer, 113, 47 - 54. https://doi.org/10.1016/j.ejca.2019.04.001
. (2019). Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal Of Cancer, 113, 47 - 54. https://doi.org/10.1016/j.ejca.2019.04.001
. (2019). Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal Of Cancer, 113, 47 - 54. https://doi.org/10.1016/j.ejca.2019.04.001
. (2019).