Papers

Export 11 results:
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Rücker, D., Hornfeck, R., & Paetzold, K.. (2018). Investigating ergonomics in the context of human-robot collaboration as a sociotechnical system (Vol. 784, pp. 127 - 135; J. Chen, Ed.). In (Vol. 784, pp. 127 - 135). https://doi.org/10.1007/978-3-319-94346-6_12
Chee, F. M. (2018). An Uber ethical dilemma: examining the social issues at stake. Journal Of Information, Communication And Ethics In Society, 16(3), 261 - 274. https://doi.org/10.1108/JICES-03-2018-0024
Chan, S., & Siegel, E. L.. (2019). Will machine learning end the viability of radiology as a thriving medical specialty?. The British Journal Of Radiology, 92(1094), 20180416. https://doi.org/10.1259/bjr.20180416
Cascio, W. F., & Montealegre, R.. (2016). How technology is changing work and organizations. Annual Review Of Organizational Psychology And Organizational Behavior, 3(1), 349 - 375. https://doi.org/10.1146/annurev-orgpsych-041015-062352
Carter, D. (2018). How real is the impact of artificial intelligence? The business information survey 2018. Business Information Review, 35(3), 99 - 115. https://doi.org/10.1177/0266382118790150
Carpini, J. A., Parker, S. K., & Griffin, M. A.. (2017). A review and synthesis of the individual work performance literature. Academy Of Management Annals, 11(2), 825 - 885. https://doi.org/10.5465/annals.2015.0151
Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N.. (2015). Intelligible Models for HealthCare (L. Cao, Zhang, C., Joachims, T., Webb, G., Margineantu, D. D., & Williams, G., Trans.). In the 21th ACM SIGKDD International ConferenceProceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15 (1721 - 1730). https://doi.org/10.1145/278325810.1145/2783258.2788613
Cai, L., Fan, L., Lai, W., LONG, Y., Wang, P., & Xin, X.. (2018). DEFINITION, APPLICATION AND INFLUENCE OF ARTI FICIAL INTELLIGENCE ON DESIGN INDUSTRIES. Landscape Architecture Frontiers, 6(2), 56. https://doi.org/10.15302/J-LAF-20180207
B
Bærøe, K., Miyata-Sturm, A., & Henden, E.. (2020). How to achieve trustworthy artificial intelligence for health. Bulletin Of The World Health Organization, 98, 257–262. https://doi.org/10.2471/BLT.19.237289
Prainsack, B., & Buyx, A.. (2018). The value of work: Addressing the future of work through the lens of solidarity. Bioethics, 32(9), 585 - 592. https://doi.org/ 10.1111/bioe.12507
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 205395171562251. https://doi.org/10.1177/2053951715622512
Burden, D. J. H. (2009). Deploying embodied AI into virtual worlds. Knowledge-Based Systems, 22(7), 540 - 544. https://doi.org/10.1016/j.knosys.2008.10.001
BUITEN, M. C. (2019). Towards intelligent regulation of Artificial Intelligence. European Journal Of Risk Regulation, 10(1), 41 - 59. https://doi.org/10.1017/err.2019.8

Pages