
The under-appreciated role of stigmergic
coordination in software development

Francesco Bolici, James Howison,Kevin Crowston

F

0000–0000/00$00.00 c© 200X IEEE

1

The under-appreciated role of stigmergic
coordination in software development

Abstract—Coordination in software development teams has been a
topic of perennial interest in empirical software engineering research.
The vast majority of this literature has drawn on a conceptual sepa-
ration between work and coordination mechanisms, separate from the
work itself, which enable groups to achieve coordination. Traditional
recommendations and software methods focused on planning: using
analysis to predict and manage dependencies. Empirical research has
demonstrated the limits of this approach, showing that many important
dependencies are emergent and pointing to the persistent importance
of explicit discussion to managing these dependencies as they arise.
Drawing on work in Computer-Supported Collaborative Work and build-
ing from an analogy to collaboration amongst insects (stigmergy), we
argue that the work product itself plays an under-appreciated role in
helping software developers manage dependencies as they arise. This
short paper presents the conceptual argument with empirical illustra-
tions and explains why this mechanism would have significant impli-
cations for Software Engineering coordination research. We discuss
issues in marshaling clear positive evidence, arguing that these issues
are responsible, in part, for the under-consideration of this mechanism
in software engineering and outlining research strategies which may
overcome these issues.

1 INTRODUCTION

COORDINATION in software development teams has
been a topic of perennial interest in empirical soft-

ware engineering research. The starting point of the liter-
ature on this topic is a conceptual separation between the
work itself, on the one hand, and activities undertaken
to coordinate it, on the other. This split is clear in the
literature from Conway [1] through Grinter [2] and on
to the socio-technical congruence work of Cataldo and
colleagues [3]. This split is not limited to the software
engineering literature; it also figures in the manage-
ment literature, where these two concepts are sometimes
named “work” and “articulation work” [e.g. 4, 5] and
sometimes “tasks” and “coordination mechanisms” [6].

The work that addresses this topic has taken two
basic approaches to the question of interdependencies in
software development: elimination or adjustment. Elim-
ination is a strategy which attempts to analyze and plan
in advance in order to reduce and ideally eliminate these
dependencies, for example by identifying components
and specifying their interactions in advance [7, 8, 9] of-
ten through well-designed and documented component
APIs [see 10].

Empirical studies, however, have repeatedly identified
the inadequacy of such strategies. Curtis and colleagues
examined how requirement and design decisions were
made, represented, communicated, and how these de-
cisions impacted subsequent development processes for
large systems [11]. They found that large projects have
extensive communication and coordination needs which

are not mitigated by documentation, and emphasize
the resulting need for explicit discussion among de-
velopers. Consistent with this suggestion, Kraut and
Streeter found that the formal and informal communica-
tion mechanisms for coordinating work on large-scale,
complex software projects were important for sharing
information and achieving coordination in software de-
velopment [12] and, further, that reliance on personal
linkages rather than electronic networks contributed to
coordination success [13].

In sum, such studies have found that, regardless of
efforts to reduce dependencies, communication between
the actors is correlated to the ability to coordinate their
work activities [e.g. 14] because such communication
helps the actors identify and resolve dependencies as
they become apparent through the unfolding of the
work. Cataldo and colleagues, following this second
path of argument, have examined the impact on software
development productivity of socio-technical congruence
between the coordination requirements and mechanisms
[3]. They demonstrate that organizations were more suc-
cessful when there is a congruence between the structure
of technical dependencies as a source of coordination re-
quirements and the capability to coordinate, as measured
by the organization’s communication patterns (based on
co-location, team membership and explicit discussion).

This paper makes the argument that this separation of
work and coordination work, while rhetorically useful
in combating the planning strategy, may be disguising
an important reality worthy of focused research: that
developers actively engage in identifying, understanding
and resolving emerging dependencies in interaction with
the work itself (the codebase and its unfolding in contri-
butions by others) before turning to explicit discussion.
Further, even when engaging in explicit discussion this
interpretative process continues and the artifacts of work
play a crucial and under-explored role in making such
discussion effective.

2 STIGMERGIC COORDINATION

Recent work outside Software Engineering has intro-
duced the metaphor of stigmergic coordination. Draw-
ing from an observational study of building architects,
Christensen argues that the work is “partly coordinated
directly through the material field of work” [15, p 559].
This language draws on earlier work on Computer Sup-
ported Collaborative Work by Schmidt & Simone [16],
who refer to the visible location of work as the “field
of work”. This concept pays attention to the shared,

2

visible workspace and its changes as indirect interaction
between actors and goes so far as to argue that “coopera-
tive work is constituted by the interdependence of multi-
ple actors who, in their individual activities, in changing
the state of their individual field of work, also change
the state of the field of work of others and who thus
interact through changing the state of a common field of
work” [16, p. 158]. At that time Schmidt & Simone did
not, however, focus on this mutually changing field of
work, these visible artifacts and their interpretation, as
a primary coordination mechanism, preferring to focus
on separate structures of articulation work realized in
separate coordination protocols. This line of thinking
was also presented by Robinson [17], quoting Sørgaard,
“one is by explicit communication about how the work
is to be performed . . . another is less explicit, mediated
by the shared material used in the work process” [18].

Christensen [15] draws on the Grasse’s work in co-
ordination amongst insects, especially termites, to de-
scribe how architects he observed were coordinating
their work,

in addition to relying on second order coordinative efforts
(at meetings, over the phone, in emails, in schedules, etc.),
actors coordinate and integrate their cooperative efforts by
acting directly on the physical traces of work previously
accomplished by themselves or others.

Grasse coined the concept of stigmergy as “a class
of mechanisms that mediated animal-animal interac-
tions” [19]. Heylighen discussed stigmergy in open
source software development in very general terms,
presenting a definition, “A process is stigmergic if the
work (‘ergon’ in Greek) done by one agent provides a
stimulus (‘stigma’) that entices other agents to continue
the job.” [20]. Each insect (ant, bee, etc.) influences the
behavior of other insects by indirect communication
through the use of changes to their shared environment
(e.g., chemical traces or building material for the nest).
The action of an actor produces changes in the environ-
ment, and these changes can provide a stimulus for other
actors, who respond with another action, triggered by
the previous one. Thus the traces left by an individual,
or the result of its work, can act as a direct source
of stimuli for others, both stimulating them to act and
directing their action. Considering the examples of the
ants, this process allows the building of complex and
interdependent structures without central coordination
and direct communication. Stigmergic social insect be-
havior explains how simple agents, without deliberation,
communication or central coordination, can contribute to
a common result simply responding to stimuli provided
by other individuals and by the environment. We are
not the first to apply this analogy to the organization of
open source developers [21, 22, 20].

Software developers, of course, are not mindless in-
sects, responding in preprogrammed and unavoidable
ways to their environments. Indeed Christensen [15] ac-

knowledges this amongst architects, drawing on Good-
win’s concept of “professional vision” [23]:

We could suggest that practices of stigmergy are based on
the actor’s professional vision directed at the material field
of work (e.g. sketches and drawings) where traces of work
previously accomplished are recognized and acted on to a
coordinative effect

To us this suggests a clear and appealing picture of
coordination in software development teams drawing
attention to the active interpretative process in which
the shared workspace created by software repositories al-
lows developers to identify dependencies between their
current work and the collected past work of the team.1

We do, however, want to go further than Christensen
was able to in the domain of architecture. Unlike draw-
ings and sketches, software code is an active artifact: one
is able to do things with it, one is able to ask questions
of it, run scenarios and test changes and observe their
effects. In this way a developer interacting with a code-
base is, in some ways relevant to coordination, similar
to an explicit discussion. Further a developer is not
merely faced with a static codebase, but is able to observe
changes to it as other developers choose to make them
available. These changes not only indicate what others
are working on, (or rather were as discussed by [24])
but provide interpretable clues regarding likely future
actions. In other ways, of course, active interpretation of
even a changing shared workspace is limited; we will
consider limitations below.

2.1 Empirical illustration

In order to find empirical illustrations of stigmergic coor-
dination in software development projects, we analyze
those virtual settings in which traditional coordination
mechanisms face limitations and thus alternative mecha-
nisms seem to be more applicable. We focus on free/libre
and open source software (FLOSS) development projects
as an interesting setting in which to study coordina-
tion as they face the challenges of coordinating action
in distributed environments, with substantial numbers
of volunteers, changing and fuzzy lines of authority,
and limited or no access to traditional mechanisms of
ad-hoc coordination, such as face to face meetings or
even telephones. Research on FLOSS is enhanced by the
excitement with which it is held as a model success
for distributed, innovative work [25]. FLOSS appears
to eschew traditional project coordination mechanisms
such as formal planning, system-level design, schedules,
and defined development processes [26]. Characterized
by a globally distributed developer force and a rapid and
reliable software development process, effective FLOSS
development teams somehow profit from the advantages
and overcome the challenges of distributed work, mak-
ing their practices potentially of great interest to main-

1. We are grateful to our anonymous reviewers for encouraging more
recognition of the active role of the developer

3

stream development [27]. Accordingly our empirical il-
lustrations come from two comparable FLOSS projects,
Fire and Gaim. Both projects were relatively successful
community-based projects developing a multi-protocol
IM client.

A first example of stigmergic coordination in Fire
development project emerges from a chat between two
developers:

<reallyjat> i just noticed that the readme has the wrong
month on it... so i’ll fix that
<gbooker> :)
<reallyjat> i made some changes to the about box... did
you notice?
<gbooker> Just finished downloading. Haven’t check out
CVS is a while though. This is one long changelog.

Reallyjat’s words illustrate a first point: he checked
the CVS and he noticed a (minor) issue, deciding to
fix it, acting on his interpretation of the artifact itself.
Secondly, we notice that reallyjat seems to expect that
gbooker would be watching changes in the CVS. Thus,
it seems that their expected way of working is to make
changes in the code and examining others changes in the
CVS. The third consideration is that, as soon as the two
developers start discussing, gbooker downloads the last
software version and examines it so that both developers
can refer to the code while discussing.

The role of the code itself as an active element in
coordinating development activities emerges also from
another example:

<jtownsend> Reading your description above this all
sounds like a good idea. However, in looking at the code
I’m wondering whether we should be case insensitive on
the tags like we were before [...]

In this example, jtownsend seems to agree with a
developer’s proposal, but as soon as he examines the
code he changes his mind suggesting to avoid a specific
technique that had made sense in explicit discussion.
This example shows an interesting setting in which the
decision about a development task changes after the
interaction between the developer and the code itself.

Our final empirical illustration show that artifacts of
work can be directly interpretated by other developers
in their development activities:

<Dan Scully> I’ve attached a preliminary patch for
RSS Newsfeed support. [...] Most of the patch is self-
explanatory, but I’ll cover the major ideas here [...]

The importance of the artifact of work in FLOSS
development project is also confirmed by the words of a
Fire key developer that interviewed about what com-
munication channel was predominant in coordinating
development activities says:

CVS was most important for most tasks.
These examples illustrate, in a manner limited by the

evidence issues we consider below, the crucial role that
the code itself plays in shaping software development
activities. We have illustrated examples in which devel-
opment tasks are influenced by developers’ interaction

with the artifact of work itself and the manner in which
the code plays a role in coordination among developers.

2.2 Affordances and limitations of stigmergic coor-
dination

As shown by our empirical illustrations the artifacts of
work can play a role in coordination among developers.
Such coordination has both advantages and limitations.

Since stigmergy is enabled by the interaction between
an individual and the artifact itself, stigmergic coordi-
nation works also in contexts where synchronous com-
munication and physical proximity among actors are
difficult or impossible. Thus, the key point for stigmergic
coordination is that at any time each individual can
access the artifact of work so that they can interpret the
changes made by the other developers and eventually
leave their own. This is the case of FLOSS projects, where
the CVS and the other artifacts are always accessible by
everyone, most of the communications are technology
mediated (often in an asynchronous way) and the devel-
opers are geographically distributed. Thus, stygmergic
coordination can be reached at any time and from any
place, since it is independent of the presence of the other
actors involved in collaborative activities.

The codebase has another affordance that is important
in its coordinative role: the software can be instantiated
and tested at any moment. This is a crucial characteristic
because a developer can run the software and obtain
direct feedback about the success or failure of the current
version of the artifact with their changes. In this way
they can iteratively enhance their understanding of it
and modify their strategy for managing interdependen-
cies between what is there already and what they are
trying to accomplish. In this way a developer can avoid
direct discussion with others, since their active engage-
ment with the artifact can provide substantial insight.
If direct discussion is needed, developers can engage in
highly contextualized discussion enabled by their shared
artifact.

The application of stigmergic coordination is also
promising because it has low overheads, and it reduces
the need for structures of articulation work and therefore
the need to maintain congruence between work and
coordinating mechanisms.

While a transparent, changing codebase has intriguing
advantages it also has clear limitations as a coordina-
tion mechanism. The first limitation is that the artifacts
need to be interpreted by developers. Thus, in some
cases, coordination through artifacts can lead to potential
misunderstanding if developers do not share a similar
“professional vision” [23].

Moreover in the artifacts the developers can find the
activities that have already been accomplished, while
merely planned actions are not necessarily represented.
This is the issue pointed out by studies focusing on
raising awareness of what others are doing, prior to
them checking code in and thus altering the shared

4

artifact [e.g. 24, 28]. Similarly, while the current codebase
may give hints in regard to future plans of others and
the team, since these are not yet realized in working
code, the affordences of inquiry discussed above are
not available. Such plans may exist in other artifacts of
the team, such as collected user stories, but the mental
effort required to transpose those to code is substantial
and the literature reviewed in our introduction suggests
that interdependencies only emerge in a concrete way
as the code is written. This does help to reconceptualise
the useful role of intermediate representations of future
plans, such as executable specifications (also known as
tests that fail), as practiced, for example in the Ruby
community through rspec.

3 IMPLICATIONS FOR SOFTWARE ENGINEER-
ING COORDINATION RESEARCH

Stigmergic coordination through software repositories, if
true, raises two important implications. The first is a
challenge to the current formulation of socio-technical
congruence [e.g. 3]. The second explores recommenda-
tions flowing from understanding source code reposito-
ries as communicative and coordination venues: what
features and practices best support stigmergic coordina-
tion?

Cataldo and colleagues [29, 3] frame the question of
inquiry into socio-technical congruence as one between a
set of actors (social frame) and a set of artifact/technical
objects (technical frame) and argue that the two sets
should fit in order to have better performance. Further
it focuses on measuring the social frame through a
set of interaction measures including co-location, co-
presence on a sub-team and evidence of direct discursive
communication.

In contrast the conceptual work in this paper suggests
that the two sets are continuously interacting through an
additional venue: the actors are leaving traces of their
actions in the code and they are reading and reflecting
on the code written by others in order to take coor-
dinated action. In such a situation the code influences
the actors’ behaviors and actors’ behavior simultane-
ously influences the shape of new code. However this
type of coordination is difficult to analyze through the
congruence measures suggested by Cataldo, Wagstrom,
Herbsleb & Carley [29], since the social and technical
frames cannot be separated for analysis. The implica-
tion is that analyses seeking to assess social-technical
congruence, indeed all analyses of coordination, should
also consider the extent of stigmergic coordination—the
extent to which developers are able to resolve emergent
dependencies by examining the changing codebase.

The second implication focuses on the communicative
aspects of the code repository and its role in stigmergic
coordination. This conceptualization directs attention to
the affordances of the repository: a good artifact for
stigmergic coordination ought to be widely available and
readily understandable, both as a final product (readable

code) and, more novelly, as a dynamic product. Dy-
namic understandability explains why norms like atomic
commits, where logically linked changes are bundled
together but separated from logically distinct changes,
have become a norm in the FLOSS community. Indeed
entire tool development efforts, such as SVN and git
have focused on supporting these practices. Where ac-
cessible clear code and comments are insufficient pro-
gramatic descriptions of developer intent can extend the
coordinative capacity of repositories, such as test suites.
Further this conceptualization helps to convey how good
documentation practices provide resources for develop-
ers to identify and resolve emergent dependencies.2

This understanding of code repositories also continues
the questioning of the function of modularity as coordi-
nation through information hiding [e.g. 30, 31]. If one of
the functions of the repository is dynamic understand-
ing for adaptive collaboration as requirements change
and dependencies become clearer, then enforcing strict
information hiding through access controls in the source
code repository seems likely to be counter-productive,
removing the ability of developers to track the evolution
of each other’s work and mutually adjust to it; this is
similar to the argument regarding the pros and cons of
fixed APIs [10]. Information overload is reduced if the
repository, and its history, are available for inspection
when the developer wants, as opposed to only through
explicit discussions which lose their context over time.

4 STRATEGIES FOR RESEARCH

We believe that this mechanism of coordination has been
under-appreciated in the literature because it is difficult
to observe and measure. This is because it occurs primar-
ily in the heads of developers and in their non-recorded
interactions with the code in their private workspaces;
research on coordination in software development has
not ventured into this territory. In this section we con-
sider two broad strategies which may be pursued to
examine these ideas further and discuss the challenges
attendant to each. The first is proof by elimination and
the second is proof by positive demonstration.

In principle it ought to be possible to create a con-
vincing demonstration by eliminating other known co-
ordination mechanisms, demonstrating an explanatory
gap which the perspective presented in this paper can
credibly fill. This is because in a pure case of stigmergic
coordination there will be no record left at all, unlike
explicit plans, procedures or discussion. Yet the absence
of data as a form of proof is particularly hard to rely on,
since the possibility reasonably exists that additional, un-
collected communication, such as the use of unarchived
IRC, direct instant messenger or non-archived emails, or
even face to face or telephone communication occurred
but has not been collected. For example, we examined
the dataset collected by Howison [32], focusing on tasks

2. We are indebted to an anonymous reviewer for this point

5

in which more than one developer and found that 14
of 20 had no explicit discussion between the developers
in the publicly archived data, yet, since the participants
were not able to provide IM or IRC logs from that period,
we could not rule out the possibility that the dependen-
cies were in fact identified and resolved through explicit
discussion, rather than active interpretation of shared
artifacts alone.

The second strategy is proof by positive demonstra-
tion. One obvious place to search is in any archives
of explicit communication one does have. The empir-
ical illustrations quoted above do, we hope, provide
evidence of expectations and practices consistent with
the operation of stigmergic coordination, yet the reality
persists that an invisible process only becomes visible in
this way when it fails in some way, coming up against
its limitations. In this way all evidence that leaks into
explicit discussion is likely to be relatively ambiguous.

A second form of proof by positive demonstration,
however, may be more productive. It may be possible to
ask developers to explain out loud how they were able to
manage emergent dependencies in a programming task,
highlighting in detail when they identified a dependency
and how they explored it and came to choose their
course of action. Conducting such an interview could be
augmented with click-stream data of their interactions
with the codebase (and other tools in their environment),
assisting their recall and providing the interviewer a re-
source for directed questioning. This method, of course,
would be qualitative with both the positive and negative
implications that come with such an approach. Nega-
tively it would be invasive, time-consuming and non-
representative, in that one could only conduct detailed
interviews with a limited number of participants and
tasks. Positively, however, this method might provide
the most useful detail on how the process works, when
it is useful and when it is not and, importantly, what
software engineers might do to support and extend this
coordination mechanism.

5 CONCLUSION

This paper has argued that the literature on coordination
in software engineering would be improved by returning
to an under-appreciated line of reasoning inspired by
stigmergy. Here the active, interpretative role of the
developer, especially as they interact with and observe
a dynamic codebase is understood as an important co-
ordination mechanism. Stigmergic coordination emerges
between the individual and the collective level: looking
at the behavior of a group of developers, they seem to be
cooperating in an organized and coordinated way for the
production of complex software; but at each individual
level, they often seem to be working alone [32]. We
provide illustrations of this concept, reasons why we
believe this mechanism has been under-appreciated and
strategies for remedying this situation.

REFERENCES

[1] M. E. Conway, “How do committees invent,”
Datamation, vol. 14, no. 4, pp. 28–31, 1968. [Online].
Available: http://www.melconway.com/research/
committees.html

[2] R. E. Grinter, “Supporting articulation work using
software configuration management systems,” Com-
puter Supported Cooperative Work, vol. 5, no. 4, pp.
447–465, 1996.

[3] M. Cataldo and J. D. Herbsleb, “Communication
networks in geographically distributed software
development,” in Proceedings of the Conference on
Computer-supported Cooperative Work (CSCW ’08).
San Diego, CA, USA: ACM, 2008, pp. 579–588.

[4] E. M. Gerson and S. L. Star, “Analyzing due pro-
cess in the workplace,” ACM Transactions on Office
Information Systems, vol. 4, no. 3, pp. 257–270, 1986.

[5] A. Strauss, “Work and the division of labor,” The
Sociological Quarterly, vol. 26, no. 1, pp. 1–19, 1985.

[6] T. Malone and K. Crowston, “The interdisciplinary
theory of coordination,” ACM Computing Surveys,
vol. 26, no. 1, pp. 87–119, 1994.

[7] S. D. Eppinger, D. E. Whitney, R. P. Smith, and
D. A. Gebala, “A model-based method for orga-
nizing tasks in product development,” Research in
Engineering Design, vol. 6, no. 1, pp. 1–13, 1994.

[8] D. L. Parnas, P. C. Clements, and D. M. Weiss,
“The modular structure of complex systems,” IEEE
Transactions on Software Engineering, vol. 11, no. 3,
pp. 259–266, 1981.

[9] C. Y. Baldwin and K. Clark, Design Rules: The Power
of Modularity. Cambridge, MA: Harvard Business
School Press, 2001.

[10] C. R. B. de Souza, D. Redmiles, L.-T. Cheng,
D. Millen, and J. Patterson, “Sometimes you need
to see through walls—a field study of application
programming interfaces,” in Conference on Computer-
Supported Cooperative Work, Chicago, IL,, November
6-10 2004, pp. 63–71.

[11] B. Curtis, H. Krasner, and N. Iscoe, “A field study
of the software design process for large systems,”
Communications of the ACM, vol. 31, no. 11, pp. 1268–
1287, 1988.

[12] R. E. Kraut and L. A. Streeter, “Coordination in
software development,” Communications of the ACM,
vol. 38, no. 3, pp. 69–81, 1995.

[13] R. E. Kraut, C. Steinfield, A. P. Chan, B. Butler, and
A. Hoag, “Coordination and virtualization: The role
of electronic networks and personal relationships,”
Organization Science, vol. 10, no. 6, pp. 722–740, 1999.

[14] J. D. Herbsleb and D. Moitra, “Global software
development,” IEEE Software, vol. 18, no. 2, pp. 16–
20, March/April 2001.

[15] R. Christensen, Lars, “The logic of practices of
stigmergy: representational artifacts in architectural
design,” in CSCW ’08: Proceedings of the ACM 2008
conference on Computer supported cooperative work.

http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html

6

New York, NY, USA: ACM, 2008, pp. 559–568.
[16] K. Schmidt and C. Simone, “Coordination mecha-

nisms: Towards a conceptual foundation of CSCW
systems design,” Computer Supported Cooperative
Work: The Journal of Collaborative Computing, vol. 5,
pp. 155–200, 1996.

[17] M. Robinson, “Computer-supported cooperative
work: Cases and concepts,” in Proceedings of Group-
ware ’91, 1991, pp. 59–75.

[18] P. Sørgaard, “Object-oriented programming and
computerised shared material,” Computer Science
Department Aarhus University, Tech. Rep., 1989.

[19] P.-P. Grassé, “La reconstrution du nid et les co-
ordinations inter-individuelles chez Bellicositermes
natalensis et Cubitermes sp. La théorie de la stig-
mergie: Essai d’interprétation du comportament de
termites constructeurs,” Insectes sociaux, vol. 6, no. 1,
pp. 41–80, 1959.

[20] F. Heylighen, “Why is open access development
so successful? Stigmergic organization and the
economics of information,” in Open Source Jahrbuch
2007, B. Lutterbeck, M. Bärwolff, and R. A. Gehring,
Eds. Berlin: Lehmanns Media, 2007. [Online].
Available: http://arxiv.org/pdf/cs.CY/0612071

[21] A. Ricci, A. O. M. Viroli, L. Gardelli, and E. Oliva,
“Cognitive stigmergy: Towards a framework based
on agents and artifacts,” in Environments for Multi-
Agent Systems III, ser. Lecture Notes in Computer
Science, vol. 4389. Springer, 2007, p. 124.

[22] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona,
“Self-organized development in libre software: A
model based on the stigmergy concept,” in 6th
International Workshop on Software Process Simulation
and Modeling, 2005.

[23] C. Goodwin, “Professional vision,” American An-
thropologist, vol. 96, no. 3, pp. 606–633, 1994.

[24] Palantir: raising awareness among configuration
management workspaces, 2003. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2003.1201222

[25] W. Harrison, “Editorial: Open source and empirical
software engineering,” Empirical Software Engineer-
ing, vol. 6, no. 3, pp. 193–194, 2001. [Online]. Avail-
able: http://www.springerlink.com/openurl.asp?
genre=article&id=doi:10.1023/A:1017379030770

[26] J. D. Herbsleb and R. E. Grinter, “Architectures,
coordination, and distance: Conway’s law and be-
yond,” IEEE Software, vol. 16, no. 5, pp. 63–70, 1999.

[27] K. Alho and R. Sulonen, “Supporting virtual soft-
ware projects on the Web,” in Workshop on Co-
ordinating Distributed Software Development Projects,
7th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE
’98), Palo Alto, CA, USA, 1998.

[28] J. Tam and S. Greenberg, “A framework for
asynchronous change awareness in collaborative
documents and workspaces,” International
Journal of Human-Computer Studies, vol. 64,
no. 7, pp. 583 – 598, 2006, theoretical and

empirical advances in groupware research.
[Online]. Available: http://www.sciencedirect.
com/science/article/B6WGR-4JKRWH6-1/2/
2a3a8faa317d56a8e926b4b6e0625df8

[29] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and
K. M. Carley, “Identification of coordination re-
quirements: Implications for the design of collab-
oration and awareness tools,” in Proceedings of the
20th anniversary conference on Computer-supported co-
operative work (CSCW ’06). Banff, Alberta, Canada:
ACM, 2006, pp. 353–362.

[30] D. L. Parnas, P. C. Clements, and D. M. Weiss,
“The modular structure of complex systems,” IEEE
Transactions on Software Engineering, vol. 11, no. 3,
pp. 259–266, 1985.

[31] C. Y. Baldwin and K. B. Clark, Design Rules: The
Power of Modularity. Cambridge, MA: MIT Press,
2000, vol. 1.

[32] J. Howison, “Alone together: A socio-technical the-
ory of motivation, coordination and collaboration
technologies in organizing for free and open source
software development,” Ph.D. dissertation, Syra-
cuse University, School of Information Studies,
2009.

http://arxiv.org/pdf/cs.CY/0612071
http://dx.doi.org/10.1109/ICSE.2003.1201222
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/A:1017379030770
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/A:1017379030770
http://www.sciencedirect.com/science/article/B6WGR-4JKRWH6-1/2/2a3a8faa317d56a8e926b4b6e0625df8
http://www.sciencedirect.com/science/article/B6WGR-4JKRWH6-1/2/2a3a8faa317d56a8e926b4b6e0625df8
http://www.sciencedirect.com/science/article/B6WGR-4JKRWH6-1/2/2a3a8faa317d56a8e926b4b6e0625df8

	Introduction
	Stigmergic coordination
	Empirical illustration
	Affordances and limitations of stigmergic coordination

	Implications for Software engineering coordination research
	Strategies for research
	Conclusion

