Papers

Export 10 results:
Filters: First Letter Of Last Name is M  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Musib, M., Wang, F., Tarselli, M. A., Yoho, R., Yu, K. - H., Andrés, R. Medina, et al.. (2017). Artificial intelligence in research. Science, 357(6346), 28 - 30. https://doi.org/10.1126/science.357.6346.28
Murphy, R. R., & Schreckenghost, D.. (2013). Survey of metrics for human-robot interaction. In IEEE International Conference. Presented at the IEEE International Conference. Retrieved de https://ieeexplore.ieee.org/document/6483569
Mumford, E. (2006). The story of socio‐technical design: Reflections on its successes, failures and potential. Information Systems Journalinformation Systems Journal, 16, 317-342.
Mukhalipi, A. (2018). Human capital management and future of work; job creation and unemployment: a literature review. Oalib, 05(09), 1 - 17. https://doi.org/10.4236/oalib.1104859
Mou, Y., & Xu, K.. (2017). Comparing the initial human-human and human-AI social interactions. Computers In Human Behavior, 72, 432 - 440. https://doi.org/10.1016/j.chb.2017.02.067
Morgeson, F. P., & Campion, M. A.. (2003). Work design. In W. Borman, Ilgen, D., & Klimoski, R. (Eds.), Handbook of Psychology: Industrial and Organizational Psychology (pp. 423–452). Hoboken, NY: Wiley.
Morgeson, F. P., & Humphrey, S. E.. (2006). The Work Design Questionnaire (WDQ): Developing and validating a comprehensive measure for assessing job design and the nature of work. Journal Of Applied Psychology, 91(6), 1321 - 1339. https://doi.org/10.1037/0021-9010.91.6.1321
Morgeson, F. P., & Humphrey, S. E.. (2008). Job and team design: Toward a more integrative conceptualization of work design. Research In Personnel And Human Resources Managementresearch In Personnel And Human Resources Management, 27, 39–91.
Moore, M. M., Slonimsky, E., Long, A. D., Sze, R. W., & Iyer, R. S.. (2019). Machine learning concepts, concerns and opportunities for a pediatric radiologist. Pediatric Radiology, 49(4), 509 - 516. https://doi.org/10.1007/s00247-018-4277-7
Moody, K. (2018). High tech, low growth: Robots and the future of work abstract. Historical Materialism, 26(4), 3 - 34. https://doi.org/10.1163/1569206X-00001745
Moniz, A., & Krings, B. - J.. (2016). Robots working with humans or humans working with robots?. Societies, 6(3), 23. https://doi.org/10.3390/soc6030023
Mokyr, J., Vickers, C., & Ziebarth, N. L.. (2015). The history of technological anxiety and the future of economic growth: Is this time different?. Journal Of Economic Perspectives, 29(3), 31 - 50. https://doi.org/10.1257/jep.29.3.31
Mohr, J. W., Wagner-Pacifici, R., & Breiger, R. L.. (2015). Toward a computational hermeneutics. Big Data & Society, 2(2), 205395171561380. https://doi.org/10.1177/2053951715613809
Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A.. (2018). Robotic Process Automation for Auditing. Journal Of Emerging Technologies In Accounting, 15(1), 1 - 10. https://doi.org/10.2308/jeta-10589
Mlynar, J., Alavi, H. S., Verma, H., & Cantoni, L.. (2018). Towards a Sociological Conception of Artificial Intelligence. In Artificial General Intelligence (AGI). Presented at the Artificial General Intelligence (AGI). https://doi.org/10.1007/978-3-319-97676-1_13
Mishel, L., & Bivens, J.. (2017). The zombie robot argument lurches on. Economy Policy Institute. Retrieved de http://epi.org/126750
Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T.. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings In Bioinformatics, 19(6), 1236 - 1246. https://doi.org/10.1093/bib/bbx044
Mikhaylov, S. Jankin, Esteve, M., & Campion, A.. (2018). Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 376(2128), 20170357. https://doi.org/10.1098/rsta.2017.0357
N. Meyer, D. (1982). Office automation: A progress report. Office Technology And People, 1(1), 107 - 121. https://doi.org/10.1108/eb022608
Dahya, R., & Morris, A.. (2019). Toward a conceptual framework for understanding AI action and legal reaction (Vol. 11489, pp. 453 - 459; M. - J. Meurs & Rudzicz, F., Eds.). In (Vol. 11489, pp. 453 - 459). https://doi.org/10.1007/978-3-030-18305-9_44

Pages