Dalgali, A., & Crowston, K. (2020). Algorithmic Journalism and Its Impacts on Work. Computation + Journalism Symposium . https://cpb-us-w2.wpmucdn.com/express.northeastern.edu/dist/d/53/files/2020/02/CJ_2020_paper_26.pdf
Jackson, C., Østerlund, C., Crowston, K., Harandi, M., Allen, S., Bahaadini, S., Coughlin, S., Kalogera, V., Katsaggelos, A., Larson, S., Rohani, N., Smith, J., Trouille, L., & Zevin, M. (2020). Teaching Citizen Scientists to Categorize Glitches using Machine-Learning-Guided Training. Computers in Human Behavior, 105, 106198. https://doi.org/10.1016/j.chb.2019.106198
Hall, K. L., Vogel, A. L., & Crowston, K. (2019). Comprehensive collaboration plans: Practical considerations spanning across individual collaborators to institutional supports. In K. L. Hall, A. L. Vogel, & R. T. Croyle (Eds.), Strategies for Team Science Success (pp. 587-611). Springer International Publishing. https://doi.org/10.1007/978-3-030-20992-6_45
Dolata, M., Schwabe, G., & Crowston, K. (2019). Getting your data refinery ready to work: Insights from cognitive application development projects.
Crowston, K., Mitchell, E. M., & Østerlund, C. (2019). Coordinating Advanced Crowd Work: Extending Citizen Science. Citizen Science: Theory and Practice, 4, 1–12. https://doi.org/10.5334/cstp.166
Østerlund, C., & Crowston, K. (2019). Documentation and Access to Knowledge in Online Communities: Know Your Audience and Write Appropriately? Journal of the American Society for Information Science and Technology, 70(6), 619–633. https://doi.org/10.1002/asi.24152
Saltz, J., Heckman, R., Crowston, K., You, S., & Hegde, Y. (2019). Helping data science students develop task modularity. In Proceedings of the 52nd Hawai’i International Conference on System Sciences (HICSS-52). https://doi.org/10.24251/HICSS.2019.134
You, S., Crowston, K., Saltz, J., & Hegde, Y. (2019). Coordination in OSS 2.0: ANT Approach. In Proceedings of the 52nd Hawai’i International Conference on System Sciences (HICSS-52). https://doi.org/10.24251/HICSS.2019.120
Dalgali, A., & Crowston, K. (2019). Sharing open deep learning models. In Proceedings of the 52nd Hawai’i International Conference on System Sciences (HICSS-52). https://doi.org/10.24251/HICSS.2019.256