@booklet {Commission2020, title = {White Paper on Artificial Intelligence - A European approach to excellence and trust}, howpublished = {COM(2020) 65 final}, year = {2020}, abstract = {Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein-protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy by enhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM- GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD <= 2.0 {\r A} for the interface backbone atoms) increased from 21\% with default Glide SP settings to 58\% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63\% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40\% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.}, url = {https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part}, author = {Commission, European} }