Error message

The page style have not been saved, because your browser do not accept cookies.

Papers

Export 11 results:
Filters: Filter is   [Clear All Filters]
2020
Suran, S., Pattanaik, V., & Draheim, D.. (2020). Frameworks for collective intelligence: A systematic literature review. In ACM Computing Surveys (pp. 1–36). https://doi.org/10.1145/3368986
Abeliansky, A. L., Algur, E., Bloom, D. E., & Prettner, K.. (2020). The Future of Work: Meeting the Global Challenge of Demographic Change and Automation. International Labour Review, 1–28. https://doi.org/10.1111/ilr.12168
Harandi, M., Crowston, K., Jackson, C., & Østerlund, C.. (2020). The Genie in the Bottle: Different Stakeholders, Different Interpretations of Machine Learning. In Hawai'i International Conference on System Science. https://doi.org/10.24251/HICSS.2020.719
PDF icon Social_Construction_of_ML_in_GS_HICCS2020.pdf (124.3 KB)
H. Harvey, B., & Gowda, V.. (2020). How the FDA regulates AI. Academic Radiology, 27(1), 58 - 61. https://doi.org/10.1016/j.acra.2019.09.017
Bærøe, K., Miyata-Sturm, A., & Henden, E.. (2020). How to achieve trustworthy artificial intelligence for health. Bulletin Of The World Health Organization, 98, 257–262. https://doi.org/10.2471/BLT.19.237289
Delfanti, A., & Frey, B.. (2020). Humanly Extended Automation or the Future of Work Seen through Amazon Patents. Science, Technology, & Human Values, 016224392094366. https://doi.org/10.1177/0162243920943665
Crowston, K., & Bolici, F.. (2020). Impacts of the Use of Machine Learning on Work Design. In 8th International Conference on Human-Agent Interaction. https://doi.org/10.1145/3406499.3415070
PDF icon Impacts_of_ML_for_HAI_2020.pdf (453.59 KB)
Jung, J. Hwa, & Lim, D. Geon. (2020). Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technological Forecasting And Social Change, 159, 120202. https://doi.org/10.1016/j.techfore.2020.120202
Grimshaw, D. (2020). International organisations and the future of work: How new technologies and inequality shaped the narratives in 2019. In Journal of Industrial Relations (pp. 477–507). https://doi.org/10.1177/0022185620913129
Azarova, L., Kudryavtseva, M., & Sharakhina, L.. (2020). Key Advantages and Risks of Implementing Artificial Intelligence in the Activities of Professional Communicators. In Proceedings of the 2020 IEEE Communication Strategies in Digital Society Seminar, ComSDS 2020 (82–86). https://doi.org/10.1109/ComSDS49898.2020.9101238
Das, S., Steffen, S., Clarke, W., Reddy, P., Brynjolfsson, E., & Fleming, M.. (2020). Learning occupational task-shares dynamics for the future of work. In AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (36–42). https://doi.org/10.1145/3375627.3375826
Crowston, K. (2020). Lessons for Supporting Data Science from the Everyday Automation Experience of Spell-Checkers. In Automation Experience across Domains (AutomationXP20), CHI'20 Workshop, 26 April 2020, Virtual. Presented at the Automation Experience across Domains (AutomationXP20), CHI'20 Workshop, 26 April 2020, Virtual, Virtual workshop.
PDF icon Everyday_automation camera ready.pdf (421.84 KB)
Kernbach, J. M., & Staartjes, V. E.. (2020). Machine learning-based clinical prediction modeling – A practical guide for clinicians. Artificial Intelligence In Precision Health, 257–278. https://doi.org/10.1016/b978-0-12-817133-2.00011-2
Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G. Jan, Elkins, A., et al.. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information And Management, 57, 103174. https://doi.org/10.1016/j.im.2019.103174
Wagner, D. Nicolas. (2020). The nature of the Artificially Intelligent Firm - An economic investigation into changes that AI brings to the firm. Telecommunications Policy, 44, 101954. https://doi.org/10.1016/j.telpol.2020.101954
Spencer, D., & Slater, G.. (2020). No automation please, we're British: Technology and the prospects for work. Cambridge Journal Of Regions, Economy And Society, 13, 117–134. https://doi.org/10.1093/cjres/rsaa003
Sampson, S. (2020). Predicting Automation of Professional Jobs in Healthcare. In Proceedings of the 53rd Hawaii International Conference on System Sciences (3, 3529–3537). https://doi.org/10.24251/hicss.2020.433
McLeay, F., Osburg, V. Sophie, Yoganathan, V., & Patterson, A.. (2020). Replaced by a Robot: Service Implications in the Age of the Machine. Journal Of Service Research. https://doi.org/10.1177/1094670520933354
Willcocks, L. (2020). Robo-Apocalypse cancelled? Reframing the automation and future of work debate. In Journal of Information Technology. https://doi.org/10.1177/0268396220925830
Riemer, K., & Peter, S.. (2020). The robo-apocalypse plays out in the quality, not in the quantity of work. In Journal of Information Technology. https://doi.org/10.1177/0268396220923677
Arduengo, M., & Sentis, L.. (2020). The Robot Economy : Here It Comes. International Journal Of Social Robotics. https://doi.org/10.1007/s12369-020-00686-1

Pages